Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nutrients ; 16(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276564

RESUMO

Epicatechin is a polyphenol compound that promotes skeletal muscle differentiation and counteracts the pathways that participate in the degradation of proteins. Several studies present contradictory results of treatment protocols and therapeutic effects. Therefore, the objective of this systematic review was to investigate the current literature showing the molecular mechanism and clinical protocol of epicatechin in muscle atrophy in humans, animals, and myoblast cell-line. The search was conducted in Embase, PubMed/MEDLINE, Cochrane Library, and Web of Science. The qualitative analysis demonstrated that there is a commonness of epicatechin inhibitory action in myostatin expression and atrogenes MAFbx, FOXO, and MuRF1. Epicatechin showed positive effects on follistatin and on the stimulation of factors related to the myogenic actions (MyoD, Myf5, and myogenin). Furthermore, the literature also showed that epicatechin can interfere with mitochondrias' biosynthesis in muscle fibers, stimulation of the signaling pathways of AKT/mTOR protein production, and amelioration of skeletal musculature performance, particularly when combined with physical exercise. Epicatechin can, for these reasons, exhibit clinical applicability due to the beneficial results under conditions that negatively affect the skeletal musculature. However, there is no protocol standardization or enough clinical evidence to draw more specific conclusions on its therapeutic implementation.


Assuntos
Catequina , Animais , Humanos , Catequina/farmacologia , Catequina/uso terapêutico , Catequina/metabolismo , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Proteína MyoD/metabolismo , Serina-Treonina Quinases TOR/metabolismo
2.
Molecules ; 26(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562825

RESUMO

The aim is to evaluate the effects of photobiomodulation therapy (PBMT) on the guided bone regeneration process (GBR) in defects in the calvaria of rats filled with biphasic calcium phosphate associated with fibrin biopolymer. Thirty male Wistar rats were randomly separated: BMG (n = 10), defects filled with biomaterial and covered by membrane; BFMG (n = 10), biomaterial and fibrin biopolymer covered by membrane; and BFMLG (n = 10), biomaterial and fibrin biopolymer covered by membrane and biostimulated with PBMT. The animals were euthanized at 14 and 42 days postoperatively. Microtomographically, in 42 days, there was more evident bone growth in the BFMLG, limited to the margins of the defect with permanence of the particles. Histomorphologically, an inflammatory infiltrate was observed, which regressed with the formation of mineralized bone tissue. In the quantification of bone tissue, all groups had a progressive increase in new bone tissue with a significant difference in which the BFMLG showed greater bone formation in both periods (10.12 ± 0.67 and 13.85 ± 0.54), followed by BFMG (7.35 ± 0.66 and 9.41 ± 0.84) and BMG (4.51 ± 0.44 and 7.11 ± 0.44). Picrosirius-red staining showed greater birefringence of collagen fibers in yellow-green color in the BFMLG, showing more advanced bone maturation. PBMT showed positive effects capable of improving and accelerating the guided bone regeneration process when associated with biphasic calcium phosphate and fibrin biopolymer.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Fibrina/química , Regeneração Tecidual Guiada/métodos , Terapia com Luz de Baixa Intensidade , Animais , Ratos , Crânio/citologia , Crânio/efeitos dos fármacos , Crânio/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-32849277

RESUMO

Signaling lipid mediators released from 5 lipoxygenase (5LO) pathways influence both bone and muscle cells, interfering in their proliferation and differentiation capacities. A major limitation to studying inflammatory signaling pathways in bone and muscle healing is the inadequacy of available animal models. We developed a surgical injury model in the vastus lateralis (VL) muscle and femur in 129/SvEv littermates mice to study simultaneous musculoskeletal (MSK) healing in male and female, young (3 months) and aged (18 months) WT mice compared to mice lacking 5LO (5LOKO). MSK defects were surgically created using a 1-mm punch device in the VA muscle followed by a 0.5-mm round defect in the femur. After days 7 and 14 post-surgery, the specimens were removed for microtomography (microCT), histopathology, and immunohistochemistry analyses. In addition, non-injured control skeletal muscles along with femur and L5 vertebrae were analyzed. Bones were microCT phenotyped, revealing that aged female WT mice presented reduced BV/TV and trabecular parameters compared to aged males and aged female 5LOKO mice. Skeletal muscles underwent a customized targeted lipidomics investigation for profiling and quantification of lipid signaling mediators (LMs), evidencing age, and gender related-differences in aged female 5LOKO mice compared to matched WT. Histological analysis revealed a suitable bone-healing process with osteoid deposition at day 7 post-surgery, followed by woven bone at day 14 post-surgery, observed in all young mice. Aged WT females displayed increased inflammatory response at day 7 post-surgery, delayed bone matrix maturation, and increased TRAP immunolabeling at day 14 post-surgery compared to 5LOKO females. Skeletal muscles of aged animals showed higher levels of inflammation in comparison to young controls at day 14 post-surgery; however, inflammatory process was attenuated in aged 5LOKO mice compared to aged WT. In conclusion, this new model shows that MSK healing is influenced by age, gender, and the 5LO pathway, which might serve as a potential target to investigate therapeutic interventions and age-related MSK diseases. Our new model is suitable for bone-muscle crosstalk studies.


Assuntos
Araquidonato 5-Lipoxigenase/fisiologia , Doenças Ósseas/terapia , Osso e Ossos/lesões , Modelos Anatômicos , Músculo Esquelético/lesões , Doenças Musculares/terapia , Cicatrização , Fatores Etários , Animais , Doenças Ósseas/etiologia , Doenças Ósseas/patologia , Osso e Ossos/patologia , Osso e Ossos/cirurgia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/cirurgia , Doenças Musculares/etiologia , Doenças Musculares/patologia , Fatores Sexuais
4.
Biomolecules ; 10(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32121647

RESUMO

Bone defects cause aesthetic and functional changes that affect the social, economic and especially the emotional life of human beings. This complication stimulates the scientific community to investigate strategies aimed at improving bone reconstruction processes using complementary therapies. Photobiomodulation therapy (PBMT) and the use of new biomaterials, including heterologous fibrin biopolymer (HFB), are included in this challenge. The objective of the present study was to evaluate the influence of photobiomodulation therapy on bone tibial reconstruction of rats with biomaterial consisting of lyophilized bovine bone matrix (BM) associated or not with heterologous fibrin biopolymer. Thirty male rats were randomly separated into three groups of 10 animals. In all animals, after the anesthetic procedure, a noncritical tibial defect of 2 mm was performed. The groups received the following treatments: Group 1: BM + PBMT, Group 2: BM + HFB and Group 3: BM + HFB + PBMT. The animals from Groups 1 and 3 were submitted to PBMT in the immediate postoperative period and every 48 h until the day of euthanasia that occurred at 14 and 42 days. Analyses by computed microtomography (µCT) and histomorphometry showed statistical difference in the percentage of bone formation between Groups 3 (BM + HB + PBMT) and 2 (BM + HFB) (26.4% ± 1.03% and 20.0% ± 1.87%, respectively) at 14 days and at 42 days (38.2% ± 1.59% and 31.6% ± 1.33%, respectively), and at 42 days there was presence of bone with mature characteristics and organized connective tissue. The µCT demonstrated BM particles filling the defect and the deposition of new bone in the superficial region, especially in the ruptured cortical. It was concluded that the association of PBMT with HFB and BM has the potential to assist in the process of reconstructing bone defects in the tibia of rats.


Assuntos
Materiais Biocompatíveis , Matriz Óssea , Regeneração Óssea , Fibrina , Terapia com Luz de Baixa Intensidade , Tíbia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Matriz Óssea/química , Matriz Óssea/transplante , Bovinos , Fibrina/química , Fibrina/farmacologia , Masculino , Ratos , Ratos Wistar , Tíbia/lesões , Tíbia/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-31839802

RESUMO

Fibrin biopolymers, previously referred as "fibrin glue" or "fibrin sealants", are natural biomaterials with diverse applications on health. They have hemostatic, adhesive, sealant, scaffold and drug delivery properties and have become widely used in medical and dental procedures. Historically, these biomaterials are produced from human fibrinogen and human or animal thrombin, and the possibility of transmission of infectious diseases by human blood is not ruled out. In the 1990s, to overcome this problem, a new heterologous biomaterial composed of a thrombin-like enzyme purified from Crotalus durissus terrificus venom and a cryoprecipitate rich in fibrinogen extracted from buffaloes Bubalus bubalis blood has been proposed. Therefore, a systematic review of studies on exclusively heterologous fibrin sealants published between 1989 and 2018 was carried out using the following databases: PubMed, SciELO and Google Scholar. The keyword used was "heterologous fibrin sealant". The search resulted in 35 scientific papers in PubMed, four in SciELO and 674 in Google Scholar. After applying the inclusion/exclusion criteria and complete reading of the articles, 30 studies were selected, which formed the basis of this systematic review. It has been observed that the only completely heterologous sealant is the one produced by CEVAP/UNESP. This heterologous biopolymer is proven effective by several studies published in refereed scientific journals. In addition, clinical trials phase I/II for the treatment of chronic venous ulcers authorized by the Brazilian Health Regulatory Agency (ANVISA) were completed. Preliminary results have indicated a safe and promising effective product. Phase III clinical trials will be proposed and required to validate these preliminary findings.

6.
J. venom. anim. toxins incl. trop. dis ; 25: e20190038, 2019. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1040381

RESUMO

Fibrin biopolymers, previously referred as "fibrin glue" or "fibrin sealants", are natural biomaterials with diverse applications on health. They have hemostatic, adhesive, sealant, scaffold and drug delivery properties and have become widely used in medical and dental procedures. Historically, these biomaterials are produced from human fibrinogen and human or animal thrombin, and the possibility of transmission of infectious diseases by human blood is not ruled out. In the 1990s, to overcome this problem, a new heterologous biomaterial composed of a thrombin-like enzyme purified from Crotalus durissus terrificus venom and a cryoprecipitate rich in fibrinogen extracted from buffaloes Bubalus bubalis blood has been proposed. Therefore, a systematic review of studies on exclusively heterologous fibrin sealants published between 1989 and 2018 was carried out using the following databases: PubMed, SciELO and Google Scholar. The keyword used was "heterologous fibrin sealant". The search resulted in 35 scientific papers in PubMed, four in SciELO and 674 in Google Scholar. After applying the inclusion/exclusion criteria and complete reading of the articles, 30 studies were selected, which formed the basis of this systematic review. It has been observed that the only completely heterologous sealant is the one produced by CEVAP/UNESP. This heterologous biopolymer is proven effective by several studies published in refereed scientific journals. In addition, clinical trials phase I/II for the treatment of chronic venous ulcers authorized by the Brazilian Health Regulatory Agency (ANVISA) were completed. Preliminary results have indicated a safe and promising effective product. Phase III clinical trials will be proposed and required to validate these preliminary findings.(AU)


Assuntos
Biopolímeros , Fibrina , Hemostáticos , Trombina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...